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Recent studies of the structure of wall turbulence have lead to the development of a conceptual

model that validates and integrates many elements of previous models into a relatively simple

picture based on self-assembling packets of hairpin vortex eddies. By continually spawning new

hairpins the packets grow longer in the streamwise direction, and by mutual induction between

adjacent hairpins the hairpins are strained so that they grow taller and wider as they age. The

result is a characteristic growth angle in the streamwise-wall normal plane. The spanwise

growth of individual packets implies that packets must either merge or pass through each other

when they come into contact. Direct numerical simulations of the growth and interaction of

spanwise adjacent hairpins shows that they merge by the vortex connection mechanism

originally proposed by Wark and Nagib (1990). In this mechanism the quasi-streamwise legs

of two hairpins annihilate each other, by virtue of having opposite vorticity, leaving a new

hairpin of approximately double the width of the individuals. PIV measurements in planes

parallel to the wall support this picture. DNS of multiple hairpins shows how the spanwise scale

doubles when the hairpins form an array.

Key Words: Turbulence, Vortices, Wall Turbulence, Structure, Eddies

1. Introduction

One of the most famous empirical 'laws' in

turbulence is v. Karman's law which states that in

a certain region above a wall the mean velocity

varies as a logarithmic function of the distance

from the wall. The inverse constant of

proportionality is the v. Karman constant. The

constant applies for a variety of flows - boundary

layer, pipe, channel, smooth wall, rough wall­

and its value is independent of the Reynolds

number. The logarithmic variation is used to set a

wall boundary condition in the vast majority of

all turbulent CFD solutions of flows involving

solid boundaries. Acceptance of the logarithmic
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law is so wide spread that a recent challenge to its

validity (Barrenblatt and Chorin, 1997) has

stimulated furious experimental activity to resolve

the issue, despite relatively small practical

ramifications. To claim to understand wall tur­

bulence, it is essential, at the minimum, to give a

complete explanation for the logarithmic varia­

tion and a sound prediction of the value of v.

Karman's constant. But, there exists at this time

no theory capable of predicting the constant. This

is, perhaps, not surprising since the v. Karman

constant is most likely an embodiment of funda­

mental aspects of the structure of the eddies in

wall turbulence, and a unified mechanistic picture

of the near-wall turbulence structure and genera­

tion process has only recently begun to emerge

(Adrian, Meinhart and Tomkins, 2000) .

2. Hairpin Vortex Packet Model of
Wall Turbulence

Experimental and computational results for

smooth walls (Meinhart and Adrian 1995, Zhou,
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Fig. 1 Paradigm of a single hairp in vortex

Fig. 2 Paradigm of a hierarchy of hairpin packets

Ad rian and Balachandar , 1996, 1999, T omkins,

Ad ria n and Balachandar 1998, Ad rian, Meinh art

and T om kins, 2000) give strong support to a

(undoubtedly simplistic) mechanistic picture of

wall turbulence based on a hierarchy of hairpin

packe ts. The cent ra l element in this model is the

hairp in vortex, F ig. 1. This elementar y form of

eddy has been suspected of playing a major role

in wall turbulence since the pion eering work of

Theodorsen (1952). A second central element in
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Fig. 3 Complex hairpin packe t that evolves from a slightly asymmetric initial distur bance. Such pack ets are

also thought to evolve from loca l bumps on a wall

Fig. 4 · Turbulent eddies in Reynolds number= 300 channel flow. Vortices that are part of a hairpin packet have

been highlighted to make them visible amongst the background clutter. Note the simila rity between the

groups of edd ies in this fully turbulent flow and the complex hairpin packet in Fig. 3

the anatomy of wall turbulence is the packet of

hairpins, con sisting of a group of ha irp ins more

or less aligned in the streamwise direction.

Observations of hairpins in groups were first

made by flow visuali zatio ns using smoke (Head

and Bandyop adhyay, 1981) and Hs- bub bles

(Smith , 1984) . Persuasive demonstration of the

pervasiveness and importance of hairp ins and

hairpin packets had to awai t the developme nt of

DNS and multi-point experimental methods

which enabled the quantitati ve studies of Zhou,

et al . (1999) and Adrian, et al . (2000) .
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The third central element in this picture is an

autogeneration process whereby a hairpin vortex

spawns a younger, smaller hairpin, which in turn

spawns a still younger hairpin, and so on (Smith,

et al., 1991, Zhou, et al., 1999). Repeated autog­

eneration forms packets of hairpins lined up be­

hind one another, Fig. 2. The grand-sire hairpin

is the largest, with the younger generations fol­

lowing behind, each generation being smaller.

The growth rate of the hairpins, the time between

regeneration of new hairpins and their convection

velocity combine to give the envelop of each

packet a characteristic growth angle that is

believed to be one factor that determines v.

Karman's constant.

Observation of these structures, in fully three­

dimensional time-dependent DNS or in two­

dimensional snapshots from laser sheet

experiments, is intrinsically difficult, partly due to

chaos, partly due to subtle technical difficulties in

visualizing eddies (or even defining them), and

partly due to the complexity that results from

many generations of hairpin packets coexisting

and interacting. For example, Fig. 3 shows a

packet that evolves out of a single hairpin with a
small (- 10- 2

) initial asymmetry. While the

packet paradigm is simple, the realizations are

not. In fact, the eddies of a fully turbulent channel

flow field, Fig. 4, contain hairpin packets that

look not significantly more complex than the

example in Fig. 3.

The method of visualizing the eddies in Fig. 3

and 4 is called the 'swirling strength'. Vorticity is

a good indicator of eddies when it is concentrated

in a small-diameter core. This is because the

velocity field associated with a concentrated

vortex is amenable to interpretation in terms of

the Biot-Savart law. If the vorticity is associated

with distributed shear, similar interpretation is

not so useful. To detect concentrated vorticity

having the nature of a core, several procedures

have been developed based on critical point theo­

ry (Perry and Chong 1987, Chong, Perry and

Cantwell, 1990, Hunt, Wray and Moin, 1988,

Jeong and Hussain 1995). The method we prefer

uses the imaginary part of the complex eigenvalue

of the velocity gradient tensor (Zhou, et al. 1999)

called the 'swirling strength'. In regions where all

the eigenvalues of the velocity gradient tensor are

real, the swirling strength is zero. The swirling

strength has a very simple kinematic interpret­

ation that makes it useful as a new kinematic

quantity. Specifically, a nonzero swirling strength

indicates local dominance of rotation-rate over

strain-rate. Then, in a frame of reference moving

at local velocity, there exists a plane on which the

projected path of fluid particles spirals in or out.

The reciprocal of the swirling strength is the

period required for a fluid particle to orbit the

point at which the velocity gradient tensor is

evaluated. In pure shear flow, the period of the

orbit is infinite, and the swirling strength is zero,

despite the non-zero vorticity of the flow. Hence,

visual renderings of surfaces of non-zero swirling

strength show only those vortical regions of the

flow that 'swirl', while discriminating against the

regions of strong shear.

3. Growth of the Spanwise
Length Scale

The logarithmic law is believed to be a conse­

quence of an orderly property that underlies the

chaos of wall turbulence wherein the eddies have

a self-similar geometrical structure characterized

by a length scale that is proportional, in a statis­

tical sense, to distance from the wall. Large Re

implies a thick logarithmic layer and if the model

is to be taken seriously, a thick logarithmic layer

must imply existence of large hairpin packets

whose size scales with the layer thickness. Recent

observations of large hairpin packets in the at­

mospheric boundary layer provide important

support for the model.

The lateral spacing of Ai~ 100 between near­

wall low-speed streaks is well established. This

spacing can also be interpreted as the lateral size

of the youngest generation of hairpins that form

in the near-wall region. The single-most impor­

tant problem is to explain the sequence of events

that allows the very small hairpin eddies created

in the low Reynolds number region near a wall to

grow into eddies that are orders of magnitude

larger while maintaining structural similarity.
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Strict similarity requires growth of length scales

in all three directions Imagine a hairpin vortex

that grows in all directions while maintaining

exactly the same shape. A brief glance at Fig. 3

and 4 is sufficient to convince one that such

perfect self-similar growth will never occur. In­

stead, the similarity must of a statistical nature. In

the terminology of Townsend (1976) we must

seek 'self-preserving growth'. Thus, as the packets

age, we look for integral length scales that grow

in x, y and z in constant proportion.

The growth of an individual hairpin along the

streamwise and wall-normal directions can be

explained relatively easily. The mean shear

stretches the hairpin along the streamwise direc­

tion, while the effect of self-induction is to curl

the hairpin backwards and lift the head away

from the wall (see Zhou, et al. 1999 for details) .

A balance between shear- and self-induced

stretching is observed to result in a self-similar

growth of the hairpin over time.

Numerical simulations of the evolution of a

single hairpin vortex have shown that as a hairpin

at the wall grows older it generates subsequent

secondary and tertiary hairpins, and so on, which

are aligned along the streamwise direction (Zhou

et al . 1999). The heads of the sequence of older to

younger hairpins that form a packet, are observed

to form a characteristic angle with respect to the

wall that ranges between 12 and 20 degrees with

a mean of 13 to 15 degrees. PIV measurements on

the streamwise-wall-normal plane by Adrian, et

al . (2000) provide experimental support for sim­

ilar growth of the hairpins at much higher

Reynolds numbers. The more complex pattern of

asymmetric vortices shown in Fig. 3 also grows

upwards at about the same rate, indicating that

the growth is not sensitive to details of the vortex

structure. The packet in Fig. 3 also grows in the

spanwise direction at a rate roughly similar to

that found in the wall-normal direction, as do the

packets that can be found in Fig. 4. Further

studies are needed to establish the spanwise

growth rate firmly, but at this point it can be

safely stated that the available evidence (Kempka

1988, Moin, et al., 1986) is not inconsistent with

the hypothesis of three-dimensional self-pre-

serving growth of the eddies in a packet.

While self-preserving growth of a single packet

might explain the logarithmic law as a conse­

quence of the scale increasing in proportion to y,

it cannot be the full story. Lateral interaction

between hairpins must be an important ingredient

in the spanwise scaling of the hairpin vortices as

they grow along the streamwise and wall-normal

directions. As the packets expand in the spanwise

direction they must ultimately interact by vortex

encounters. Encounters also occur due to larger,

faster packets running over smaller, slower

packets. But, DNS results (some of which will be

presented below) indicate that these are not so

dramatic or influential as lateral encounters.

Some such possible vortex packet encounters are

depicted schematically in Fig. 5. In lateral

encounters, the opposing vorticity in adjacent legs

of two hypothetically identical hairpins could

annihilate them, resulting in a larger hairpin of

the same height, but double the width of the

original hairpins. Figure 5 (a) shows schema­

tically such a lateral vortex merger resulting in

larger hairpins having twice the spanwise spacing

of Ai::::= 100. Further lateral merging of the larger

hairpins can lead to subsequent progressive

increase in spanwise scale. (To the author's

knowledge this sort of lateral hairpin vortex

pairing was first proposed by Wark and Nagib

(1990), although Perry and Chong (1982) must

be credited with proposing the generic concept of

"vortex pairing of two eddies in one hierarchy to

form an eddy in the next hierarchy".) We there­

fore envision the growth of scale in the wall layer

to occur both by continuous expansion of the

eddies in an individual packet and the merger of

eddies in adjacent packets.

Figure 5(a) depicts a scenario where there is

perfect symmetry along the spanwise direction,

while Fig. 5 (b) shows a more realistic scenario

where perfect spanwise symmetry is not present.

Vortex reconnection and merger still apply, and

spanwise growth of the hairpin can be

anticipated. In interpreting this frame it must be

cautioned that the wall-normal elevation of the

hairpin varies over its length and from hairpin to

hairpin. Also, it has been established that taller
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Fig. 7 After the lateral encounter of two ha irpins the

kinetic energy of the streamwise velocity
increases more rapid ly as a result of a reduc­
tion of back- induct ion by the hai rpins

Fig. 6 A dou blewide ha irpin is formed due to lateral
encounter of two hair pins. The adj acent legs

of two hairpins are annihila ted by the oppo­

site vorticity

can also be co nject ure d, such as th at shown in

Fig. 5 (c) . In the ear ly sta ges of their development

the hairpins vo rt ices are ob served to have a Q ­
shaped hea d (Zhou et al . 1999) . Conseq ue ntly ,

the first intersection of two ha irp in s may occ ur at

the outermost secti ons of th e Q . Interestingly, the

vo rtex merger of the form shown in Fig. 5 (c)

result s in an inner hairp in whose di rection of

rotatio n is opposite to the normal hairpin. A

spanwise vo rtex merge r of th is nature can be seen

in Fig. 6, whe rein an end-view of two mergin g

vo rt ices from a DN S is shown.

Such vort ex rearr angements ha ve a strong

11

(a)

(c)

Fig. 5 Spanwise gro wth by hairpin vortex pairmg.

(a) Two similar hairpins pairing symmetri­
cally produce a new hairpin whose span wise

width is appr oximately twice the original
width; (b) a faster moving upstream hairpin

encounters an offset slower moving ha irpin.
The vortex cut and reconnectio n leads to a

la rger hairpin , similar to case (a) and a
smaller hairpin having the same circulation;
(c) Two similar, symmetrically positioned

omega-shaped vortices connect to form a

larger hai rpin plus a smaller hai rpin having
opposite circulation

hairp in packets move faste r in the strea mwise

directi on th an sho rter on es. Thus, F ig. 5 (b)

co nsiders a taller upstream packet that tra vels

faster and ca tches up with the shorter down stream

pa cket. Vortex reconnection occurs at the poin t of

in tersectio n of the vo rtex cores, and the exact

location dep ends up on the geo metry and size of

each h ai rp in.

Ob servations of full y turbulent D NS results

suggest tha t oth er scena rios of span wise growth
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influence on near-wall statistics. For example, in

Fig. 6 as a result of the vortex merger, the back­

induction of the hairpin is reduced substantially,

leading to a sudden increase in the kinetic energy

of the streamwise velocity, which is shown in Fig.

7. The effect is to increase drag. Thus, the manner

in which the interactions occur is important.

There is also experimental evidence to support

the hypothesis that hairpin vortex packets grow

by lateral merger. Tomkins (2000) has performed

a series of PlY measurements in planes parallel to

a smooth wall in a boundary layer wind tunnel.

The purpose was to see if the parallel plane data

were consistent with the occurrence of packets of

vortices, especially at Reynolds numbers higher

than the values that are currently accessible via

DNS. Power spectra in the spanwise wavenumber

and linear stochastic estimates of the streak pat­

terns each showed conclusively that the spanwise

spacing of the streaks grows in proportion dis­

tance above the wall. The vector pattern results

also showed that merging of two low-speed

streaks into a larger low-speed streak. It has been

well established that the long low-speed streaks

are associated with the streamwise-aligned

hairpins in a packet. Therefore the merger of long

streamwise streaks could be interpreted as a man­

ifestation of the pairing of two packets of

hairpins.

Direct numerical simulations of multiple

hairpin packets interacting demonstrate several

possible consequences for the evolution of the

packets. Two such scenarios are shown in Fig. 8.

In Fig. 8 (a) and 8 (b) the perspective and side

views of a complex vortex structure is shown.

This structure evolved from an initial condition

consisting on five hairpins, four of which were

placed at the corners of a rectangle, while the last

one placed at the center of the rectangle. The

hairpin vortices were allowed to evolve and in­

teract in a background turbulent channel flow of

Re-. = 300. The vortices evolve and interact in a

complex manner and the resulting vortex structure

after some evolution is shown in the figure. Evi­

dence of five original hairpin vortices forming a

rectangular pattern appears to have been forgot­

ten, indicating considerable spanwise interaction

(a)

(b)

(c)

Fig. 8 Interactions of multiple hairpin packets in a
mean turbulent flow at Rer.=300. (a) and
(b) are the perspective and side views of the

vortical structure resulting from interactions
of five hairpins, four of them are located at

each corner of a rectangle and one in the
center of it. (c) is the top view of ten
interacting hairpins aligned in the lateral di­

rection. After pairing the ten hairpins form
five groups, each of them developed from
span wise interaction
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and growth.

Figure 8 (c) shows the vortex structure resulting

from the interaction of ten initial hairpin vortices

placed side-by-side along the spanwise direction

in a turbulent channel flow of Re r.=300. The

figure shows the status of the vortex structure after

evolution for a short duration. While the ten

vortices are clearly visible at the upstream loca­

tion, the downstream development is influenced

by spanwise interaction with the ten hairpins

forming five groups after spanwise pairing.

4. Conclusions

The celebrated logarithmic law and v. Karman

constant are most likely an embodiment of fun­

damental aspects of the structure of eddies in wall

turbulence. A simple conceptual model for the

self-similar growth of the hairpin vortex eddies is

presented. By continually spawning new hairpins

the packets grow longer continuously in the

streamwise direction. As a result of mean shear

and mutual induction the hairpins are strained,

and they grow longer, taller and wider as they

age. The result is a characteristic growth angle in

the streamwise-wall normal plane and spread

angle in the strearnwise-spanwise plane. The

spanwise growth of individual packets implies

that they must either merge or pass through each

other when they come into contact. Several

scenarios of spanwise growth of the hairpins

through vortex annihilation and reconnection are

conjectured. Results from direct numerical

simulations of the growth and interaction of

spanwise adjacent hairpins show that the hairpins

merge by a vortex connection mechanism similar

to that originally proposed by Wark and Nagib

(1990). In this mechanism the quasi-streamwise

legs of two hairpins annihilate each other, by

virtue of having opposite vorticity, leaving a new

hairpin of approximately double the width of the

individuals. Thus, scale growth occurs continu­

ously for a time, until packets and/or hairpins

encounter one another, then the scale increases

very rapidly to approximately double the width in

the spanwise direction. The time for viscous

vortex reconnection is so small as to approximate

a discontinuity on the time scale of the evolution

of the packets.

While the scenario of continuous/disconti­

nuous growth is complicated, it establishes a clear

mechanism by which the scales in the x- and z­
direction can be proportional to the scales in the

y-direction. This is the essential component

needed to predict a logarithmic variation. The

rate of variation, as embodied in v. Karman's

constant remains to be related to the details of the

vortex growth and interaction.
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